
Scheduling Pre-Operative Assessment Clinic with
Answer Set Programming⋆

Simone Caruso1[0000−0002−2724−4342], Giuseppe Galatà2[0000−0002−1948−4469], Marco
Maratea1,3[0000−0002−9034−2527]⋆⋆, Marco Mochi1[0000−0002−5849−3667], and Ivan

Porro2[0000−0002−0601−8071]

1 DIBRIS, University of Genoa, Genova, Italy, {name.surname}@unige.it
2 SurgiQ srl, Genova, Italy, {name.surname}@surgiq.com

3 DeMaCS, University of Calabria, Rende, Italy, maratea@mat.unical.it

Abstract. The problem of scheduling Pre-Operative Assessment Clinic (PAC)
consists of assigning patients to a day for the exams needed before a surgical pro-
cedure, taking into account patients with different priority levels, due dates, and
operators availability. Realizing a satisfying schedule is of upmost importance
for a hospital, since delay in PAC can cause delay in the subsequent phases, thus
lowering patients’ satisfaction. In this paper, we propose a two-phase solution to
the PAC problem: In the first phase, patients are assigned to a day taking into
account a default list of exams; then, in the second phase, having the actual list
of exams needed by each patient, we use the results of the first phase to assign a
starting time to each exam. We first present a mathematical formulation for both
problems. Further, we present a solution where modeling and solving are done
via Answer Set Programming (ASP). We then introduce a rescheduling solution
that may come into play when the scheduling solution can not be applied fully.
Experiments employing synthetic benchmarks on both scheduling and reschedul-
ing show that both solutions provide satisfying results in short time. We finally
show the implementation and usage of a web application that allows to run our
scheduling solution and analyze the results graphically in a transparent way.

Keywords: Answer Set Programming · Pre-Operative Assessment Clinic Schedul-
ing · Digital Health

1 Introduction

The Pre-Operative Assessment Clinic (PAC) scheduling problem is the task of assigning
patients to a day, in which the patient will be examined and prepared to a surgical
operation, taking in account, e.g., patients with different priority levels, due dates, and
operators availability. The PAC consists of several exams needed by patients to ensure
they are well prepared for their operation. This allows patients to stay at home until
the morning of the surgery, instead of being admitted to the hospital one or two days

⋆ This is an extended and revision version of a paper appearing in the LNCS post-proceedings
of the AI*IA 2021 conference [16].

⋆⋆ Corresponding author.

2 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

before the scheduled operation; moreover, this allows to reduce waiting time between
the exams, thus increasing patients’s satisfaction [35], and to avoid the cancellation of
the surgery [27]. A proper solution to the PAC scheduling problem is vital to improve
the degree of patients’ satisfaction and to reduce surgical complications.

In our solution, the problem, whose specifications have been provided by a potential
SurgiQ4 client, is divided into two sub-problems [23]. In the first sub-problem, patients
are assigned to a day taking into account a default list of exams, and the solution has to
schedule patients before their due date and prioritize the assignments to patients with
higher priority. In the second sub-problem, the scheduler assigns a starting time to each
exam needed by the patients, considering the available operators and the duration of the
exams. Our two-phase solution is not guaranteed to find the best possible overall solu-
tion, but has been designed in this way because: (i) it simplifies the overall encoding
and its practical use, and (ii) it mimics how PAC schedules are often computed (manu-
ally) in hospitals. Complex combinatorial problems, possibly involving optimizations,
such as the PAC problem, are usually the target applications of AI languages such as
Answer Set Programming (ASP). Indeed, thanks to the readability of its specification
and the availability of efficient solvers [2, 30], driven by the organization of a number
of ASP Competitions (see, e.g., [13, 31, 32]), ASP has been successfully employed for
solving hard combinatorial problems in several research areas, including Artificial In-
telligence, Bioinformatics, Data Integration and Query Answering, Natural Language
Processing and Understanding, and Hydroinformatics, and it has been also employed
to solve many scheduling problems [40, 33, 1, 19, 20, 22], including industrial contexts
(see, e.g., [24, 26, 42, 4] for detailed descriptions of some ASP applications).

In this paper, we first present a mathematical formulation of both sub-problems:
In the solution of the first sub-problem, the scheduler minimizes the number of unas-
signed patients, while in the second sub-problem, using as input the result of the first
sub-problem, the time each patient stays at the hospital is minimized. We then apply
ASP to model and solve the PAC scheduling problem, by presenting two ASP encod-
ings for both sub-problems. We also propose a rescheduling solution that may come
into play when the scheduling solution can not be applied fully, due to, e.g., unavail-
able patients, or an operator who is suddenly missed. We run an experimental analysis
on synthetic PAC benchmarks with realistic sizes and parameters inspired from data
seen in literature, varying the number of scheduled patients and the available operators.
Overall, results using the state-of-the-art ASP solver CLINGO [30] show that ASP is a
suitable solving methodology also for the PAC scheduling and rescheduling problems.
We finally present the implementation and show the usage of a web application that
allows to insert the main parameters of the problem, run our scheduling solution and
analyze the results graphically without the need of installing any ASP software locally.

The paper is structured as follows. Sections 2 and 3 present an informal description
of the problem and a precise, mathematical formulation, respectively. Then, after the
needed background on ASP in Section 4, Section 5 shows our ASP encodings for both
phases, whose experimental evaluation is presented in Section 6. Rescheduling ASP
solutions are introduced and evaluated in Section 7, and the web application is shown

4 https://surgiq.com/.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 3

in Section 8. The paper ends by discussing related works and conclusion in Section 9
and 10, respectively.

2 Problem Description

Pre-hospitalization is the phase in which the patient enters the facility to perform lab-
oratory tests, radiological and cardiological examination, counseling for anesthesio-
logical suitability for surgery, and any other examinations that the medical specialists
deem appropriate for the definition of the pre-intervention diagnostic pathway (pneu-
mological examination, nephrological examination, etc...). The management of the pre-
intervention pathway is crucial within healthcare organizations as it involves the align-
ment of multiple facilities to ensure that services are delivered on time and in the cor-
rect manner. However, the high number of services involved in this pathway can create
critical issues in the patient’s journey in terms of service delivery time and alignment
between the various providers (Cardiology, Pulmonology, Nephrology, etc...).

In many hospitals, including the one from which the specifications we employ have
been taken, the date of the pre-operative procedures is set at a very early stage, before
the exact number of necessary exams and visits is known. Later on, after a first contact
with the patient, the number and nature of the exams and visits are settled, and can be
scheduled precisely, assigning to each of them a starting time during the day set in the
first phase. Often this problem is still solved as a manual process having critical issues
such as the scheduling of appointments and the alignment between different providers.
The automatic scheduling aims to ensure completion of the pathway in one day, to avoid
repeated patient accesses and to allow the patients performing all services on time.

In the first of the two phases outlined above, we consider that each patient requires
a default list of exams according to his specialty, i.e., the lists of exams are equal for
patients requiring the same specialty but differ among specialties, and the scheduler
assigns the day of PAC without considering the starting time of the exams, but just as-
signing a temporary starting time of the first and the last exam required by each patient
to ensure that such patients can be assigned in the same day. Thus, in the first sub-
problem the solution assigns patients overestimating the duration and the number of
exams needed. In particular, all the optional exams, such as exams required by smokers
or patients with diabetes, are assigned to all the patients in the first phase. The overes-
timation is important in order to guarantee the solvability of the second sub-problem.
Then, when the operation day is closer, the hospital knows exactly the exams needed by
each patient and can assign the starting time of each exam. Going in more details, the
first sub-problem consists of scheduling appointments in a range of days for patients
requiring a surgical operation. Each patient is linked to a due date, a target day, and a
priority level: The due date is the maximum day in which (s)he can be assigned, the
target day is the optimal day in which schedule the appointment, while the solution pri-
oritizes patients with higher priority level. There are several exam areas, corresponding
to the locations in which patients will be examined. Each exam area needs operators to
be activated and has a limited time of usage. Each operator can activate three different
exam areas, but they can be assigned to just one exam area for each day. The solution
must assign the operators to the exam areas, to activate them, and the day of PAC to

4 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Fig. 1. Schedule example: assignments of the starting time of the different exam locations of each
patient in a single day.

patients, ensuring that the total time of usage of each exam location is lower than its
limit. Since in this first sub-problem the list of exams needed by patients is not the final
list, i.e., just the first and the last exam are the same for every patient, and in the sec-
ond sub-problem some exams could be added, the solution schedules patients leaving
some unused time to each exam area. An optimal solution minimizes the number of
unassigned patients, giving priority to patients with higher priority levels, and ties are
broken by minimizing the difference between the day assigned and the target day of
each patient, giving again precedence to patients with higher priority.

In the second sub-problem, patients are linked to their real exams, so the solution has
to assign the starting time of each exam, having the first sub-problem already assigned
the day. The input consists of registrations, exams needed by patients and the exam
areas activated. Exams are ordered, so the solution must assign the starting time of each
exam respecting their order and their duration, by considering that each exam area can
be used by one patient at a time. Finally, the solution minimizes the difference between
the starting time of the first exam and the last exam of each patient.

Figure 1 shows an example of the schedule that we want to compute, by assigning
the starting times (x-axis) to each patient (y-axis) in a particular day. The patients that
must be scheduled are the same that are set by the first sub-problem in this day. As can
be seen in Figure 1, in this case the scheduler is able to assign all patients optimally;
indeed, all patients have no waiting time among the exams and thus the time spent in
the hospital is reduced to the minimum, while respecting the constraints of the problem.

3 Formalization of the PAC Scheduling problem

In this section, we provide a mathematical formulation of the two sub-problems.

Definition 1 (first PAC sub-problem). Let

– R be a finite set of registrations;
– E = {e1, . . . ,em} be a set of m exams;

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 5

– EL = {el1, . . . ,eln} be a set of n exam locations;
– O be a finite set of operators;
– D = {d : d ∈ [1..14]} be the set of all days;
– T = {t : t ∈ [1..ts]} be the set of all time slots;
– δ : R 7→ {1,2,3,4} be a function associating a registration to a priority;
– ρ : R×E 7→ N be a function associating a registration and an exam to a duration

such that for a registration r and an exam e if ρ(r,e) > 0 then the registration r
requires the exam e;

– ω : R 7→ D be a function associating a registration to a due date;
– λ : R 7→ D be a function associating a registration to a target day;
– σ : E 7→ EL be a function associating an exam to the exam location;
– µ : EL × D 7→ N be a function associating an exam location and a day to the

maximum number of registrations that can be assigned concurrently, such that
µ(el,d) = n if at most n registrations can be assigned concurrently to the exam
location el in the day d.

– τ : EL×D 7→ N be a function associating an exam location and a day to the re-
quired number of operators to be activated, such that τ(el,d) = n if the exam loca-
tion el in the day d requires n operators to be activated;

– θ : O×EL×D 7→ {0,1} be a function such that θ(o,el,d) = 1 if the operator o is
assigned to the exam location el in the day d, and 0 otherwise;

– ts be a constant that is equal to the number of time slots.

Let x : R×D×T 7→ {0,1} be a function such that x(r,d, t) = 1 if the registration r
is assigned to the day d and the time slot t, and 0 otherwise. Moreover, for a given x, let
Ax = {(r,d, t) : r ∈ R,d ∈ D, t ∈ T,x(r,d, t) = 1}.

Then, given sets R, E, EL, O, D, T , and functions δ , ρ , ω , λ , σ , µ , τ , θ , the first
PAC sub-problem is defined as the problem of finding a schedule x such that

(c1) |{(d, t) : (r,d, t) ∈ Ax}| ≤ 1 ∀r ∈ R,d ≤ ω(r);
(c2) |{(d, t) : (r,d, t) ∈ Ax}|=0 ∀r ∈ R,d > ω(r);
(c3) t ≤ ts− ∑

e∈E
ρ(r,e) ∀(r,d, t) ∈ Ax;

(c4) |{r : (r,d, t ′) ∈ Ax, t ≥ t ′, t < t ′+ρ(r,e1)}| ≤ µ(el) ∀d ∈ D, t ∈ T,el = σ(e1);
(c5) |{r : (r,d, t ′)∈ Ax, t ≥ t ′+ ∑

e∈E
ρ(r,e)−ρ(r,em), t < t ′+ ∑

e∈E
ρ(r,e)}| ≤ µ(el) ∀d ∈

D, t ∈ T,el = σ(em);
(c6) |{o : θ(o,el,d) = 1}|=τ(el,d) ∀(r,d, t) ∈ Ax,ρ(r,e)> 0,el = σ(e);
(c7) |{el : θ(o,el,d)}| ≤ 1 ∀o ∈ O,∀d ∈ D.

Condition (c1) ensures that each registration is assigned at most one time in the days
before the due date associated with the registration. Condition (c2) ensures that each
registration is not assigned after the due date associated with the registration. Condition
(c3) ensures that for each registration the sum of the duration of the exams required
plus the time slot assigned to the registration is less than the constant ts. Condition (c4)
ensures that the number of registrations having the first exam at a time slot t is less than
or equal to the allowed value for each time slot. Condition (c5) ensures that the number
of registrations having the last exam at a time slot t is less then or equal to the allowed
value for each time slot. Condition (c6) ensures that for each exam location used by

6 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

at least one registration, the required number of operators is assigned. Condition (c7)
ensures that each operator is assigned to at most one exam location each day.

Definition 2 (Unassigned registrations). Given a solution x, let U pr
x = {r : r ∈R,δ (r)=

pr,r ̸∈ Ax}. Intuitively, U pr
x represents the set of registrations of priority pr that were

not assigned to any day.

Definition 3 (Distance target day). Given a solution x, let t pr
x = ∑

x(r,d,t)∈Ax,δ (r)=pr
| d−

λ (r) | . Intuitively, t pr
x represents the sum of the distance between the day assigned to

the registrations of priority pr and the target day associated.

Definition 4. A solution x is said to dominate a solution x’ if |U pr
x | < |U pr

x′ | for the
biggest pr for which |U pr

x | ̸= |U pr
x′ | or if |U pr

x |= |U pr
x′ | for all the pr and |t pr

x |< |t pr
x′ | for

the biggest pr for which |t pr
x | ̸= |t pr

x′ |. A solution is optimal if it is not dominated by any
other solution.

Definition 5 (second PAC sub-problem). Let

– β : R×E 7→ N be a function associating a registration and an exam to a value
corresponding to the order in which the exam must be assigned, such that β (r,e) =
n and β (r,e′) = n′ and n > n′ if the registration r must do the exam e after the exam
e′;

– γ : EL 7→ N be a function associating an exam location to the starting time of the
exam location, such that γ(el) = n if n is the first time slot in which a registration
requesting the exam location el can be assigned;

– ξ : EL 7→ N be a function associating an exam location to the ending time of the
exam location, such that γ(el) = n if n is the last time slot in which a registration
requesting the exam location el can be assigned.

Let x : R×E ×EL×D× T 7→ {0,1} be a function such that x(r,e,el,d, t) = 1 if
the registration r and the exam e are assigned to the exam location el in the day d and
in the time slot t, and 0 otherwise. Moreover, for a given x let Ax = {(r,e,el,d, t) : r ∈
R,e ∈ E,el ∈ EL,d ∈ D, t ∈ T,x(r,e,el,d, t) = 1}.

Then, given sets R, E, EL, D, T , and functions ρ , β , γ , ξ , µ , the second PAC sub-
problem is defined as the problem of finding a schedule x, such that

(c8) |{(d, t) : (r,e,el,d, t) ∈ Ax}|=1 ∀e ∈ E,∀r ∈ R,ρ(r,e)> 0,σ(e) = el;
(c9) γ(el)≤ t ≤ ξ (el)−β (r,e) ∀(r,e,el,d, t) ∈ Ax;
(c10) (r,e,el,d, t) /∈ Ax ∀(r,e′,el′,d, t ′) ∈ Ax,∀e ∈ E,ρ(r,e′) = dt,∀t ∈ T, t ′ ≤ t < t ′+

dt;
(c11) t > t ′ ∀(r,e,el,d, t) ∈ Ax,(r,e′,el,d, t ′) ∈ Ax,β (r,e)> β (r,e′);
(c12) |{r : (r,e,el,d, t ′)∈ Ax,σ(e) = el, t ≥ t ′, t < t+ρ(r,e)}| ≤ µ(el) ∀el ∈ EL, t ∈ T .

Condition (c8) ensures that each exam is assigned exactly once. Condition (c9) en-
sures that each exam is assigned after the starting time of the required exam location
and before the closing time of the required exam location minus the duration of the
exam. Condition (c10) ensures that for each registration each exam is assigned after that
the exam before is ended. Condition (c11) ensures that each exam is assigned after the

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 7

exams lower in the ordering are assigned. Condition (c12) ensures that the number of
exams assigned to a location is lower than the maximum availability for each location
in any time slot.

Definition 6 (Time in hospital). Given a solution x, let

mx = ∑
(r,e1,el,d,t)∈Ax,x(r,em,el,d,t ′)∈Ax

(t ′+ρ(r,em)− t − ∑
e∈E

ρ(r,e)).

Intuitively, mx represents the waiting time between the exams. It is evaluated as the sum
of the differences between the time spent in the hospital (evaluated as the difference
between the ending time of the last exam and the starting time of the first exam) and the
sum of the durations of the exams required by each registration.

Definition 7. A solution x is said to dominate a solution x’ if mx < mx′ . A solution is
optimal if it is not dominated by any other solution.

4 Background on ASP

Answer Set Programming (ASP) [10] is a programming paradigm developed in the
field of non-monotonic reasoning and logic programming. In this section, we overview
the language of ASP. More detailed descriptions and a more formal account of ASP,
including the features of the language employed in this paper, can be found in [10, 12].
Hereafter, we assume the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings start-
ing with an uppercase letter, and constants are non-negative integers or strings starting
with lowercase letters. A term is either a variable or a constant. A standard atom is an
expression p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn are terms. An
atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants. A ground set is a set of pairs
of the form ⟨consts : con j⟩, where consts is a list of constants and con j is a con-
junction of ground standard atoms. A symbolic set is a set specified syntactically as
{Terms1 : Con j1; · · · ;Termst : Con jt}, where t > 0, and for all i ∈ [1, t], each Termsi
is a list of terms such that |Termsi| = k > 0, and each Con ji is a conjunction of stan-
dard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set term
{X : a(X ,c), p(X);Y : b(Y,m)} stands for the union of two sets: the first one contains
the X-values making the conjunction a(X ,c), p(X) true, and the second one contains
the Y -values making the conjunction b(Y,m) true. An aggregate function is of the form
f (S), where S is a set term, and f is an aggregate function symbol. Basically, aggregate
functions map multisets of constants to a constant, e.g., the function #count computes
the number of terms.

An aggregate atom is of the form f (S) ≺ T , where f (S) is an aggregate function,
≺ ∈ {<,≤,>,≥, ̸=,=} is a operator, and T is a term called guard. An aggregate atom
f (S)≺ T is ground if T is a constant and S is a ground set. An atom is either a standard
atom or an aggregate atom. A rule r has the following form:

a1 | . . . | an :– b1, . . . ,bk,not bk+1, . . . ,not bm.

8 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

where a1, . . . ,an are standard atoms, b1, . . . ,bk are atoms, bk+1, . . . ,bm are standard
atoms, and n,k,m ≥ 0. A literal is either a standard atom a or its negation not a.
The disjunction a1| . . . |an is the head of r, while the conjunction b1, . . . ,bk,not bk+1,
. . . ,not bm is its body. Rules with empty body are called facts. Rules with empty head
are called constraints. A variable that appears uniquely in set terms of a rule r is said
to be local in r, otherwise it is a global variable of r. An ASP program is a set of safe
rules, where a rule r is safe if the following conditions hold: (i) for each global variable
X of r there is a positive standard atom ℓ in the body of r such that X appears in ℓ, and
(ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears in a
positive atom in Conj.

A weak constraint [11] ω is of the form:

:∼ b1, . . . ,bk,not bk+1, . . . ,not bm. [w@l]

where w and l are the weight and level of ω , respectively. (Intuitively, [w@l] is read
as ”weight w at level l”, where the weight is the “cost” of violating the condition in
the body of w, whereas levels can be specified for defining a priority among preference
criteria). An ASP program with weak constraints is Π = ⟨P,W ⟩, where P is a program
and W is a set of weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground if no
variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand
base BP of P are defined as usual. The ground instantiation GP of P is the set of all
the ground instances of rules of P that can be obtained by substituting variables with
constants from UP.

An interpretation I for P is a subset I of BP. A ground literal ℓ (resp., not ℓ) is true
w.r.t. I if ℓ ∈ I (resp., ℓ ̸∈ I), and false (resp., true) otherwise. An aggregate atom is true
w.r.t. I if the evaluation of its aggregate function (i.e., the result of the application of f
on the multiset S) with respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I
whenever all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a ground
program GP and an interpretation I, the reduct [25] of GP w.r.t. I is the subset GI

P of
GP obtained by deleting from GP the rules in which a body literal is false w.r.t. I. An
interpretation I for P is an answer set (or stable model) for P if I is a minimal model
(under subset inclusion) of GI

P (i.e., I is a minimal model for GI
P) [25].

Given a program with weak constraints Π = ⟨P,W ⟩, the semantics of Π extends
from the basic case defined above. Thus, let GΠ = ⟨GP,GW ⟩ be the instantiation of Π ;
a constraint ω ∈ GW is violated by an interpretation I if all the literals in ω are true
w.r.t. I. An optimum answer set for Π is an answer set of GP that minimizes the sum of
the weights of the violated weak constraints in GW in a prioritized way.

Syntactic shortcuts. In the following, we also use choice rules of the form {p}, where p
is an atom. Choice rules can be viewed as a syntactic shortcut for the rule p | p′, where
p′ is a fresh new atom not appearing elsewhere in the program, meaning that the atom
p can be chosen as true.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 9

5 ASP Encoding

In this section, starting from the specifications in Section 2 and the formalization of
Section 3, we present the ASP encoding for the two sub-problems, in two separate sub-
sections, based on the input language of CLINGO [28].

5.1 ASP encoding for the first PAC sub-problem

In the following, we present the ASP encoding for the first sub-problem.

Data Model. The input data is specified by means of the following atoms:

– Instances of reg(RID,PR,TARGET,TOTDUR,DUEDATE) represent the registrations,
characterized by an id (RID), the priority level (PR), the ideal day in which the
registration should be assigned (TARGET), the sum of the durations of the exams
needed by the registration (TOTDUR), and the due date (DUEDATE).

– Instances of exam(RID,AREAID,DUR) represent the exam linked to the registration
identified by an id (RID), the exam area (AREAID), and the duration (DUR).

– Instances of examLoc(AREAID,NOP,DAY,N) represent the exam areas, character-
ized by an id (AREAID), which requires NOP operators to be activated in a day (DAY),
and can be concurrently assigned up to N registrations.

– Instances of operators(ID,AREAID,DAY) represent the operators, characterized
by an id (ID), that can be assigned to the exam area (AREAID) in a day (DAY).

– Instances of day(DAY) represent the available days.
– The constant ts represents the number of time slots considered.
– The constants f irst exam and last exam correspond to e1 and em in Section 3 (i.e.,

the first and the last exam required by every registration, respectively).
– The constants totRegsP1, totRegsP2, totRegsP3, and totRegsP4 represent the num-

ber of registrations with priority 1, 2, 3, and 4, respectively.

The output is an assignment represented by an atom of the form x(RID,PR,ST,ET,DAY),
where the intuitive meaning is that the exams of registration with id RID and priority
level PR are assigned to the day DAY, the temporary starting time of the first exam is
ST and the temporary ending time of the last exam is ET; and an atom of the form
operator(ID,AREAID,DAY), where the intuitive meaning is that the operator with id
ID is assigned to the exam area AREAID on the day DAY.

Encoding. The related encoding is shown in Figure 2, and is described in the following.
To simplify the description, we denote as ri the rule appearing at line i of Figure 2.

Rule r1 assigns registrations to a day and to a time slot. The assignment is made
assigning a day that is before the due date and to a temporary time slot such that the
sum of the time slot and the duration of the exams required is less than the constant ts.
Rule r2 checks that every registration is assigned to a day with all the exams area needed
to be activated. Rule r3 is used to ensure that the number of registrations having the first
exam is less or equal to the allowed value in every time slot. Rule r4 is used to ensure
that the number of registrations having the last exam is less or equal to the allowed value

10 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

1 {x(RID,PR,ST,ST+TOTDUR,DAY) : day(DAY),time(ST), DAY < DUEDATE, ST <= ts-TOTDUR} 1 :-
reg(RID,PR,TARGET,TOTDUR,DUEDATE).

2 :- x(RID,_,_,_,DAY), exam(RID,AREAID,_), not examLoc(AREAID,_,_,DAY,_).
3 :- #count{RID: x(RID,_,ST,_,DAY),exam(RID,first_exam,DUR), T >= ST, T < ST+DUR} > N,

examLoc(first_exam,_,_,DAY,N), day(DAY),time(S).
4 :- #count{RID: x(RID,_,_,ET,DAY),exam(RID,last_exam,DUR), T < ET, T >= ET-DUR} > N,

examLoc(last_exam,_,_,DAY,N), day(DAY),time(T).
5 {operator(ID, AREAID, DAY) : operators(ID, AREAID, DAY)} == NOP :- examLoc(AREAID, NOP, _,

DAY,_), x(RID, _, _, _,DAY), exam(RID, AREAID, _).
6 :- operator(ID,AREAID1,DAY), operator(ID,AREAID2,DAY), AREAID1 < AREAID2.
7 unassignedP1(N) :- M = #count {RID: x(RID,1,_,_,_)}, N = totRegsP1 - M.
8 unassignedP2(N) :- M = #count {RID: x(RID,2,_,_,_)}, N = totRegsP2 - M.
9 unassignedP3(N) :- M = #count {RID: x(RID,3,_,_,_)}, N = totRegsP3 - M.

10 unassignedP4(N) :- M = #count {RID: x(RID,4,_,_,_)}, N = totRegsP4 - M.
11 :∼ unassignedP1(N). [N@8]
12 :∼ unassignedP2(N). [N@7]
13 :∼ unassignedP3(N). [N@6]
14 :∼ unassignedP4(N). [N@5]
15 :∼ x(RID,1,_,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@4,RID]
16 :∼ x(RID,2,_,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@3,RID]
17 :∼ x(RID,3,_,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@2,RID]
18 :∼ x(RID,4,_,_,DAY), reg(RID,_,TARGET,_,_). [|DAY-TARGET|@1,RID]

Fig. 2. ASP encoding of the first sub-problem

in every time slot. Rule r5 assigns operators to the required exam areas, while rule r6
checks that each operator is assigned to just one exam area in every day. Rules from
r7 to r10 derive intermediate atoms unassignedP1, unassignedP2, unassignedP3, and
unassignedP4, respectively, that are used to count how many registrations with different
priorities are not assigned to a day. Weak constraints from r11 to r14 use the atoms
derived by rules from r7 to r10 to minimize the number of unassigned registrations
according to their priority. Finally, weak constraints from r15 and r18 minimize the
difference between the assigned and target day of each registration, giving precedence
to higher priorities.

5.2 ASP encoding for the second PAC sub-problem

We now move to the second sub-problem.

Data Model. The input data is the same of the first sub-problem for the atoms exam
and time, while other atoms are changed:

– Instances of reg(RID,DAY) represent the registrations, characterized by an id (RID)
assigned to a day (DAY).

– Instances of examLoc(AREAID,DAY,AREAST,AREAET,N) represent the exam ar-
eas, characterized by an id (AREAID), which in a day (DAY) has a starting time
(AREAST) and a closing time (AREAET), and can provide the exam to N registra-
tions.

– Instances of phase(AREAID,ORD) represent the order (ORD) of the exams provided
by the exam area characterized by an id (AREAID).

The output is represented by an atom of the form x(RID,AREAID,ST,ET,DAY),
where the intuitive meaning is that the exam of the registration with id RID is in exam
area AREAID, starts at time ST and ends at time ET on the day DAY.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 11

1 {x(RID,AREAID,ST,ST+DUR,DAY) : examLoc(AREAID,DAY,AREAST,AREAET,_), time(ST), ST >= AREAST,
ST <= AREAET-DUR} = 1 :- reg(RID,DAY), exam(RID,AREAID,DUR).

2 :- x(RID,AREAID1,ST1,_,_), x(RID,AREAID2,ST2,_,_), phase(AREAID1,ORD1), phase(AREAID2,ORD2),
ORD2 < ORD1, ST1 < ST2.

3 :- #count{AREAID: x(RID,AREAID,ST,ET,DAY), T >= ST, T < ET} > 1, reg(RID,DAY), time(T).
4 :- #count{AREAID: x(RID,AREAID,ST,ET,DAY), T >= ST, T < ET} > N, examLoc(AREAID,DAY,_,_,N),

time(T).
5 :∼ reg(RID,_), x(RID,first_exam,ST,_,_), x(RID,last_exam,_,ET,_). [ET-ST@1, RID]

Fig. 3. ASP encoding of the second sub-problem

Encoding. The encoding consists of the rules reported in Figure 3. Rule r1 assigns a
starting and an ending time to each exam needed by every registration, checking that
the time in which is assigned is within the opening time of the required exam area.
Rule r2 ensures that the order among the exams is respected. Rules r3 checks that each
registration is assigned to at most one exam for every time slot. Then, rule r4 checks
that each exam area provides the exam to at most N registrations for every time slot.
Finally, rule r5 minimizes the difference between the ending time of the last exam and
the starting time of the first exam of each registration.

6 forbiddenAfter(RID,AREAID1,ST+DUR1) :- reg(RID,_,_), exam(RID,AREAID1,DUR1),
phase(AREAID1,ORD1), #sum{DUR2: exam(RID,AREAID2,DUR2), phase(AREAID2,ORD2), ORD2 >
ORD1 } = ST.

7 forbiddenBefore(RID,AREAID1,ST) :- reg(RID,_,_), exam(RID,AREAID1,DUR1),
phase(AREAID1,ORD1), #sum{DUR2: exam(RID,AREAID2,DUR2), phase(AREAID2,ORD2), ORD2 <
ORD1 } = ST.

8 {x(RID,AREAID,ST,ST+DUR,DAY): examLoc(AREAID,DAY,AREAST,AREAET,_),
forbiddenAfter(RID,AREAID,FORB1), forbiddenBefore(RID,AREAID,FORB2), time(ST), ST >=
AREAST, ST <= AREAET-DUR, ST <= ts-FORB1, ST > FORB2 } = 1 :- reg(RID,PRI,DAY),
exam(RID,AREAID,DUR).

Fig. 4. Optimized encoding for pruning exams’ starting time.

Domain specific optimizations. The encoding of the second sub-problem above is
general, able to find optimal solutions, but the solver needs a large amount of time
to prove optimality. However, some domain specific optimizations may be added to
improve its performance. We present two domain specific optimizations, presented in
the following two sub-paragraphs, which rely on the knowledge of the PAC domain for
pruning impossible solutions.

Pruning of exams’ starting time slots. As shown in Figure 3, in r1 the starting time
of the exams is guessed between all the available daily time slots, expressed by the
atom time. Given that the exams must be assigned following an order, it is known
the minimum number of time slots that each patient need to stay before and after each
exam. Thus, the guess rule can be improved by reducing the number of possible starting
time slots of each exam with the following constraints:

12 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

9 cost(RID, TOT) :- TOT = #sum{DUR,AREAID : exam(RID,AREAID,DUR)}, reg(RID,_,_).
10 :∼ x(RID,first_exam,ST,_,_),x(RID,last_exam,_,ET,_), cost(RID,TOT), ET-ST-TOT >= 0. [

ET-ST-TOT@1, RID]

Fig. 5. Optimized minimization rule

– an exam cannot start in a time slot if the remaining time slots are less than the
minimum amount of time slots required to complete all the following exams;

– an exam cannot start in a time slot if the time slots before are less than the minimum
amount of time slots required to complete the previous exams.

The encoding for pruning exams’ starting time slots is obtained by substituting r1
from Figure 3 with the rules reported in Figure 4, explained in the following. In rules
r6 and r7 two new atoms forbiddenAfter and forbiddenBefore are defined as the
minimum amount of time slots needed by each patient after (resp. before) each exam.
obtained by computing the sum of the duration of the exams with the greater (resp.
lower) phase value. In r8 the two new atoms are used in the guess rule, so that the
starting time is after the value computed by rule r6, and after the difference between
lastTimeSlot, that corresponds to the last time slot, and the value computed by r7.

Minimization with lower bound. As it can be seen also in Figure 3, rule r5 minimizes
the time spent in the hospital by each patient, computed as the difference between the
ending time of the last exam and the starting time of the first exam. However, the time
spent in the hospital by each patient cannot be lower than the sum of the duration of all
the required exams. Therefore, the minimization rule can be improved by computing the
minimum time required by each patient and using it as a lower bound, so that candidate
solutions below this value are pruned.

The enconding with the optimized weak constraint is obtained by substituting rule
r5 from Figure 3 with the rules shown in Figure 5. In rule r9, the time to fully all the
exams for each patient is computed as the sum of the duration of all the exams as the
new auxiliary atom cost. The weak constraint in rule r10 then minimizes the difference
between the planned total time (i.e., the difference between ending time and starting
time of the last and first exam) and the lower bound previously computed, activating the
weak constraint only when such difference is greater or equal than zero.

6 Experimental Results

In this section, we report the results of an empirical analysis of the PAC schedul-
ing problem via ASP. For the first sub-problem (second subsection), data have been
randomly generated using parameters inspired by literature and real world data (first
subsection), then the results of the first sub-problem have been used as input for the
second sub-problem (third subsection). The last subsection is then devoted to a com-
parison to alternative logic-based formalisms. The experiments were run on a AMD
Ryzen 5 3600 CPU @ 3.60GHz with 16 GB of physical RAM. The ASP system used
was CLINGO [28] 5.4.1, using parameters --restart-on-model for faster optimization

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 13

and --parallel-mode 6 for parallel execution. Encodings and benchmarks employed in
this section can be found at: http://www.star.dist.unige.it/~marco/JLC2022/
material.zip .

6.1 PAC benchmarks

Data are based on the sizes and parameters of a typical middle sized hospital, with 24
different exam areas. The solution schedules patients in a range of 14 days, 5 hours
per day, and for each day there are 60 time slots, thus the constant ts is set to 60,
corresponding to 5 minute per time slot. To test scalability we generated 3 different
benchmarks of different dimensions, having 40, 60, and 80 patients, respectively. Each
benchmark was tested 10 times with different randomly generated input.

In particular, each registration is linked to a surgical specialty, and needs a number
of exams between 5 and 13, according to the specialty, while the duration of each exam
varies between 3 and 6 time slots. The priorities of the registrations have been generated
from an even distribution of four possible values (with weights of 0.25 for registrations
having priority 1, 2, 3, and 4, respectively). Moreover, a due date is randomly generated
for each registration. For all the benchmarks, as said there are 24 exam areas and the
operators, that are 35, can be assigned to 3 different exam areas. So, by increasing the
number of patients while maintaining fixed the number of operators, we tested different
scenarios with low, medium and high requests.

For the second sub-problem, we used the results of the first sub-problem as input.
Thus, the number of patients and the exam locations activated depend on the assign-
ments made by the first sub-problem. Patients require all the same first and last exam,
while the other exams required by each patient are linked to an order that is randomly
assigned and that must be respected by the scheduler. In the second sub-problem, clin-
ics know the actual list of exams needed by patients: To simulate this scenario, we
randomly selected the optional exams assigned to patients in the first sub-problem. The
number of such exams depend on the specialty, and on ”status” of the patient: For ex-
ample, optional exams are needed by patients that are over 65 years old or smokers.

6.2 Results for the first sub-problem

The first optimization criteria in the PAC scheduling sub-problem is to assign as many
patients as possible, starting from patients with higher priority. On all the tested in-
stances, our solution is able to assign a day to 406 out of 437 patients with the highest
priority; moreover, in 23 out of 30 instances the solution assigns a day to all or all but
one patients with the highest priority.

Table 1 summarizes the results obtained in this first sub-problem, with a timeout
set to 300 seconds for each instance, and a preliminary analysis on CLINGO done also
with other parameters, e.g., --opt-strategy=usc that allows CLINGO to employ a
different optimization algorithm: In particular, the table shows the average percentage
of patients from the 10 instances assigned with 40, 60, and 80 patients according to their
priority level. The test with 80 patients shows in particular how the solution behaves in
a scenario with high demand and low resource availability, since the number of exam

14 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Table 1. Percentage of assigned patients according to their priority level.

Total #Patients %P1 ASSIGNED %P2 ASSIGNED %P3 ASSIGNED %P4 ASSIGNED

40 92% 92% 91% 83%
60 95% 89% 82% 65%
80 91% 87% 60% 44%

areas and operators is fixed. From the table we can observe that the percentage of pa-
tients with priority 1 and 2 assigned is just slightly lower than in the other benchmarks,
while the percentage of patients assigned with lower priorities decreases, due to the few
resources available compared to the demand.

Compared to the previous version of the encoding [16] used for the first sub-problem,
this new version is able to assign more patients without leading to unsatisfiable prob-
lems in the second sub-problem. What is changed is that, while in the old version of the
encoding we used a formula to overestimate the time required by each patient, in this
new version we assign a temporary starting time for the exams in the first sub-problem.
The starting time is used to check that the first and the last exam (that are mandatory
for every patient) are not concurrently required by more than the allowed number of
patients. This change in the encoding leads to more patients assigned in the first sub-
problem and, in particular, while the previous version assigned 80% of patients with
the highest priority, with the new version we are able to assign approx. 93% of patients
with the highest priority. Moreover, testing the previous encoding using the instances
with 80 patients, the old encoding was able to assign a date just to 45% of the patients
with priority 1 and 2, while the new version assigns a date to 89% of patients.

The second optimization criteria is to have an assigned day that is as much close
as possible to the target day. This optimization criteria is able to assign some patients
close to their target day, while for other patients quality decreases. This is due to two
reasons: The first one is that there is another optimization criteria with higher priority;
thus, the scheduler already tries to assign as many patients as possible, without taking
into account the target days of the patients, and the second one is that some patients
have a target day in a day without their exam locations available, so, even in an optimal
solution the assigned day to some patients would not be in the target day.

To corroborate the general explanation above, Figure 6 reports the result obtained by
the scheduler with one of the instances with 60 patients as input. What can be seen from
the graph is that some patients are assigned in the last days, while in some days before
there are no patients assigned. This can be explained by the fact that the scheduler tries
to assign as many patients as possible and do not try to assign as soon as possible the
patients. Moreover, in some days patients can not be assigned due to the unavailability
of the exam locations. Other instances behave similarly.

6.3 Results for the second sub-problem

This subsection reports the results of the second sub-problem, with the same experi-
mental setting of the first. In the second sub-problem, the solution assigns the starting
time of each exam of the patients. The input is taken from the results obtained in the

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

2

4

6

8

10

Day

Pa
tie

nt
s

Fig. 6. Number of patients assigned to each day by the scheduler with 60 patients as input.

first sub-problem. The solution minimizes the difference between the ending time of the
last exam and the starting time of the first exam. While minimizing this value the solu-
tion tries to minimize the time spent in the hospital by all patients. In this sub-problem,
the scheduler is able to reach an optimal solution in all the instances tested. Moreover,
in every instance tested there is at most one patient that has to wait for one time slot
between two exams, while all the other patients have no waiting time between the ex-
ams. In particular, in all but three instances, patients are assigned without waiting time
among the exams.

The timings required by the scheduler in the second sub-problem are shown in Fig-
ure 7, which represents the range of seconds required to reach the optimal solution in
all the instances tested with the different number of patients, identified by the minimum
and maximum times for solving the instances in the set, together with the mean and
the median time. From the figure, it can be seen that it takes 16 seconds on average
to find the optimal solution considering instances with 40 patients. While, considering
instances with 60 and 80 patients, the scheduler finds the optimal solution on average
in 33 seconds and 44 seconds, respectively. Moreover, even in the worst case with 80
patients the scheduler is able to find the optimal solution in less than 70 seconds.

To obtain these results we used the encoding defined in Section 5.2, included the
domain specific optimizations. We are now interested in understanding the contribution
that the two optimizations bring. Table 2 presents the mean time required to reach an
optimal solution with the different version of the encoding. In particular, the second
column of the table contains results for the encoding without optimizations, defined
as BASIC, the third and fourth columns contain results with the two optimizations,
defined as OPT1 and OPT2, respectively, while the fourth column, denoted ENC, re-
ports the results with both optimizations. From Table 2, it can be noted that, while the
plain encoder is able to reach the optimal solution on 16,7% of the instances (last row),
the encoders featuring the OPT2 optimization are able to reach the optimal solution

16 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Fig. 7. Results obtained by solving 10 instances generated from the results of the first sub-problem
considering 40, 60, and 80 patients. The box starts from the first quartile and ends at the third
quartile. The mean time is represented by the (green) triangle, while the (orange) line represents
the median value.

Table 2. Comparison of the mean time required to reach the optimal solution with the different
versions of the encoding for the second sub-problem.

Total CPU TIME CPU TIME CPU TIME CPU TIME

#Patients PLAIN (S) PLAIN+OPT1 (S) PLAIN+OPT2 (S) ENC (S)

40 260.7 268.1 30.4 16.6
60 283.5 295.5 57.1 33.3
80 295.3 300.0 61.9 44.1

Percentage Optimal 16,7% 16,7% 100% 100%

on all instances. Moreover, the performance increase due to the OPT1 optimization is
not evident, at least with the current timeout, despite the advantages obtained in terms
of number of rules generated as shown in Figure 8. The figure reports the number of
rules generated by the PLAIN and by PLAIN+OPT1 options using the instances with
40 patients, and shows that the OPT1 optimization allows to decrease the number of
rules generated by approx. one third. With PLAIN+OPT2, the performance increases
noticeably, leading to the optimal solution in a few seconds. Finally, adding both OPT1
and OPT2 led to the better results, being able to reach an optimal solution in all the
instances in less time than the other encodings. Moreover, in it can be noted that, paired
with OPT2 optimization, OPT1 optimization helps further increasing the performance
of the solutions.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 17

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

·106

Instances

N
um

be
ro

fr
ul

es
PLAIN
PLAIN+OPT1

Fig. 8. Comparison between the number of rules generated using the plain encoding and using
the plain encoding with the OPT1 optimization.

6.4 Comparison to alternative logic-based formalisms

In the following, we present an empirical comparison of our ASP-based solution with
alternative logic-based approaches, obtained by applying automatic translations of ASP
instances. In more details, we used the ASP solver WASP [3], with the option --pre=wbo,
which converts ground ASP instances into pseudo-Boolean instances in the wbo for-
mat [39]. Then, we used the tool PYPBLIB [8] to encode wbo instances as MaxSAT
instances. Moreover, in order to provide a fair comparison, given that the other for-
malisms/solvers can not deal with multi-levels optimizations, we also processed our
ASP instances using WASP with the option --pre=lparse, which collapses all weak
constraints levels into one single level using exponential weights. In this way, the costs
found by the different approaches can be compared. We started from the instances with
40 patients for this analysis: Out of the 10 instances, we were able to effectively use 6
instances for the comparison, since on 4 instances WASP was not able to produce the
corresponding single-level instance.

Then, we considered three state-of-the-art MaxSAT solvers, namely MAXHS [41],
OPEN-WBO [37], and RC2 [36], and the industrial tool for solving optimization prob-
lems GUROBI [34], which is able to process instances in the wbo format. We re-run
also CLINGO on the generated single-level instances, and used other than the option
restart-on-model (CLINGO-ROM), the option --opt-strategy=usc (CLINGO-USC).
The latter enables the usage of algorithm OLL [38], which is the same algorithm em-
ployed by the MaxSAT solver RC2, and differently from previous experiments is not
dominated by CLINGO-ROM. The timeout was set to 60 seconds, given that the ground-
ing phase and instances adaptation has been done offline.

Results are shown in Table 3, where for each solver and instance we report the time
in seconds to reach the optimal solution and we write ”TIME” if it reaches the time
limit with a solution, or a dash in case the solver outputs no solution within the time

18 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Table 3. Comparison of the ASP solution to the first sub-problem with alternative logic-based
solutions.

Instance TIME (S) TIME (S) TIME (S) TIME (S) TIME (S) TIME (S)
CLINGO-ROM CLINGO-USC MAXHS OPEN-WBO RC2 GUROBI

1 9.1 1.4 15.6 1.3 1.4 10.5
2 0.1 0.1 26.2 0.1 0.3 1.1
3 TIME 30.1 TIME 30.5 27.7 39.7
4 1.4 0.4 TIME 0.2 0.8 2.2
5 9.2 1.7 41.6 1.0 − 26.5
6 TIME 1.4 28.5 0.6 1.9 11.7

limit. As a general observation, CLINGO-USC, OPEN-WBO, and GUROBI are the only
solvers that are able to find an optimal solution in all the tested instances. Moreover,
while GUROBI finds the optimal solution on average in approx. 15 seconds, OPEN-WBO
and CLING-USC obtain the best performance overall, since they are able to find the best
solution on average in approx. 5 seconds. Concerning CLINGO-ROM and MAXHS, they
are able to find an optimal solution in 4 instances. However, CLINGO-ROM is faster to
find the optimal solutions on average. Finally, RC2 is able to find an optimal solution in
5 out of 6 instances but in the fifth instance RC2 is not able to output a solution within
the time limit.

Then, we used the results obtained by the different solvers with the instances of
the first sub-problem to generate 35 instances for testing the second sub-problem. The
35 instances correspond to the 31 optimal solutions we obtained testing the first sub-
problem plus the 4 solutions that were anyway obtained reaching the time limit, though
not (guaranteed to be) optimal. In particular, each solution obtained with the instances
of the first sub-problem by the solvers represents a schedule in input for the second
sub-problem. We repeated the same automatic translation we did to obtain the instances
of the first sub-problem. In the following, we summarize the results. In the second sub-
problem, CLINGO-USC, RC2, and OPEN-WBO are able to obtain an optimal solution
within the time limit on each instance. Moreover, the average time required to solve the
instances by these solvers is very similar: CLINGO-USC requires on average approx. 16
seconds, while RC2 and OPEN-WBO require on average approx. 13 seconds. Concern-
ing the other solvers, MAXHS is able to find an optimal solution to all the instances
but one while CLINGO-ROM cannot output the optimal solution to 4 out of the 35 in-
stances tested. Finally, GUROBI cannot find the optimal solution to any of the instances
tested within the time limit. We have analyzed its behavior, and we noticed that GUROBI
spends, on these instances, a lot of time in the pre-solving phase: In order to find optimal
solutions, the timeout should be moved to the order of tens of minutes.

Finally, we discuss advantages and reasons for the ASP approach compared to the
other formalisms, to complement the analysis focused on performance above. Arguably,
ASP offers a number of advantages, including: (i) The ASP specifications are often
appreciated even by non-experts since they found them readable. This is important when
the solution has to be used in real applications; (ii) ASP allows expressing and solving
multi-level optimizations; (iii) There are free and open source systems (like CLINGO),

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 19

whose performances are often comparable (or even better) to the solvers for the other
formalisms (as confirmed by our experiments).

7 Rescheduling

In this section, we present a solution to the PAC rescheduling problem, considering
different scenarios in which a rescheduling could be required. In the hospital context
is vital to be able to react to problems with a scheduled solution; in fact, it can hap-
pen that, due to some unpredictable events, it is not possible to implement the com-
puted schedule. Therefore, it is necessary to find a new schedule that guarantees the
proper execution of the pre-operative assessment for every patient assigned in the orig-
inal scheduling. We consider three different scenarios in which rescheduling can be
required:

1. Some patients do not show up on the assigned day.
2. Some operators are missing for some days.
3. Exam locations are unavailable for some days.

Thus, given a scheduling and the information of why it is not possible to implement
it, the PAC rescheduling problem consists in moving patients and operators in order to
find a new assignment that takes into account the new information and the constraints of
the initial problem. In particular, we considered the rescheduling after the second sub-
problem: This is because either we want to reschedule, in case, the result of the whole
process, and, given the first sub-problem is usually done well in advance, it can be
more appropriate to perform another scheduling from scratch. The optimization of the
rescheduling problem consists in minimizing the changes done to the initial scheduling,
according to some criteria: The priority is to maintain the day on which patients were
assigned and, in case it is not possible, to minimize the distance between the new and
the old assigned day. Then, if a patient is rescheduled on the same day we want to
minimize the distance between the new and the old exams starting time, otherwise,
since the day is changed, it is not important to maintain the same exams starting time,
thus it is minimized the patient’s total length of the pre-operative assessment as it was
done in the second sub-problem of the PAC scheduling problem (Section 5.2). Finally,
if possible, operators are assigned in the same exam areas they were initially assigned;
but, while a solution that does not change the assigned day to the operators is preferred,
a proper solution must still activate all the exam areas required by the patients. Thus,
operators can be moved from a day to another, in order to activate the required exam
areas. Moreover, in case of unavailable operators, if it is possible to replace the operator
so that the exam area in which (s)he was assigned can still be activated then no changes
are needed; otherwise, patients requiring that exam area must be rescheduled in a new
day.

7.1 ASP encoding of the rescheduling

Data Model. The input data is the same of the PAC scheduling problem plus the fol-
lowing atoms:

20 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

1 allowedDay(RID,DAY):- reg(RID,_,DUEDATE), time(DAY,_), not forbidden(RID,DAY), DAY < DUEDATE.
2 allowedTime(RID,AREAID,ST..60-ET) :-

forbiddenBefore(RID,AREAID,ST),forbiddenAfter(RID,AREAID,ET).
3 changedDay(DAY) :- y(RID,_,_,_,DAY), x(RID,_,_,_,DAY1), DAY != DAY1.
4 changedDay(DAY) :- changedExamLoc(_,DAY).
5 changedDay(DAY) :- changedOperator(_,DAY).
6 1{y(RID,AREAID,ST,ST+DUR,DAY): allowedTime(RID,AREAID,ST), allowedDay(RID,DAY)}1 :-

reg(RID,_,DUEDATE), exam(RID,AREAID,DUR), forbidden(RID,_).
7 1{y(RID,AREAID,ST,ST+DUR,DAY): allowedTime(RID,AREAID,ST), allowedDay(RID,DAY)}1 :-

reg(RID,_,DUEDATE), exam(RID,AREAID,DUR), not forbidden(RID,_), x(RID,_,_,_,DAY1),
changedDay(DAY1).

8 y(RID,AREAID,ST,ET,DAY) :- x(RID,AREAID,ST,ET,DAY), not changedDay(DAY), not
forbidden(RID,_).

9 :- y(RID,_,_,_,DAY1), y(RID,_,_,_,DAY2), DAY1 > DAY2.
10 :∼ y(RID,_,_,_,DAY),x(RID,_,_,_,DAYX), changedDay(DAY). [|DAYX-DAY|@4,RID]
11 :∼ y(RID,AREAID,STy,_,DAY),x(RID,AREAID,STx,_,DAY). [|STx-STy|@3,RID,AREAID]
12 :∼ y(RID,first_exam,ST,_,_), y(RID,last_exam,_,ET,_), changedDay(DAY), cost(RID,TOT),

ET-ST-TOT >= 0. [ET-ST-TOT@2,RID]
13 :∼ operatorY(ID,AREAID1,DAY), operators(ID,AREAID2,DAY), AREAID1 != AREAID2. [1@1,ID,DAY]

Fig. 9. ASP encoding of the rescheduling problem.

– Instances of reg(RID,PR,DUEDATE) represent the registration of a patient, char-
acterized by an id (RID), the priority level (PR), and the duedate (DUEDATE) (i.e.,
the input of the scheduling without TARGET, which is not anymore useful, and
TOT DUR, which is not anymore valid).

– Instances of x(RID,AREAID,ST,ET,DAY) represent the previous scheduling, i.e.,
the output of the encoding in Section 5.2, without the priority field.

– Instances of operator(ID,AREAID,DAY) represent the previous scheduling, i.e.,
the output of the encoding in Section 5.1.

– Instances of forbidden(RID,DAY) represent the day (DAY) in which a patient
(RID) can not show up.

– Instances of notAvailableExamLoc(AREAID,DAY) represent the day (DAY) in
which an exam location (AREAID) is not available.

– Instances of notAvailableOperator(ID,DAY) represent the day (DAY) in which
an operator (ID) can not show up.

Output. The output is similar to the output of Section 5.2, where the new schedule is
represented by two atoms, y(RID,AREAID,ST,ET,DAY) and operatorY(ID,AREAID,DAY),
having the same meaning of atoms x and operator of Section 5.2.

Encoding. The ASP encoding of the PAC rescheduling problem we realized is made
by the rules in Figure 9, where we denote with ri rule appearing at the line i, plus rules
r5 and r6 from Figure 2, where atom operatorY replaces atom operator, rules r2-r4
from Figure 3 (corresponding to the constraints of the second sub-problem), rules r6
and r7 from Figure 4 (for computing atoms forbiddenAfter and forbiddenBefore

in the first optimization), and rule r9 in Figure 5 (corresponding to the second opti-
mization), where atom y replaces atom x.

In Figure 9, rules r1 and r2 define two auxiliary atoms that represent the possi-
ble days in which a registration can be assigned and the possible starting times of the

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 21

exams, respectively. Rules from r3 to r5 define an auxiliary atom (changeDay) that rep-
resents the days in which there are changes due to patients or operators (un)availability
or changes in the availability of the exam locations. Rule r6 assigns a new day and a
new starting time to all the exams required by the registrations that can not show up in
the previously assigned day. Rule r7 assigns a new day and new starting time to all the
exams required by the registrations that were assigned in a day involved in the changes.
Rule r8 reassigns the same day and starting time to all exams of the still available reg-
istrations that were assigned in a day without changes. Then, rule r9 ensures that, for
each registration, all his/her exams are assigned in the same day. Finally, weak con-
straints r10-r13 scecify the optimization in a prioritized way. Weak constrains r10 and
r11 minimize the distance between the old and the new date assigned to each registra-
tion, and between the old and the new starting time assigned to every exam, respectively.
Whereas, weak constraint r12 is used to minimize the time spent in the hospital by pa-
tients, while weak constraint r13, which has the lowest priority level, minimizes the
number of operators assigned to different exam locations than in the previous schedul-
ing.

7.2 Results of the rescheduling

Here, the results of an empirical analysis of the PAC rescheduling problem are pre-
sented. As for the PAC scheduling problem, the ASP system used was CLINGO [28],
ver. 5.4.0, using parameters --restart-on-model for faster optimization and --parallel-
mode 6 for parallel execution. The time limit was set to 60 seconds.

Since the rescheduling problem consists of, given a scheduling that cannot be imple-
mented, moving operators and patients to find a new assignment, the initial scheduling
was taken from all the results of the second sub-problem run with CLINGO considering
the benchmarks with 40 patients. We started from the results obtained in the second sub-
problem with 40 patients. Then, according to the different scenarios, we added the un-
availability of patients, exam locations, or operators using the atoms forbidden(RID,DAY),
notAvailableExamLoc(AREAID,DAY), and notAvailableOperator(ID,DAY) as
presented in Section 7.1. In particular, an unavailable operator will be set unavailable
for 5 consecutive days, while an unavailable exam location will be set unavailable for 3
consecutive days. To test the scalability of the solution, we considered for each scenario
1, 2, and 4 among exam locations, operators or patients unavailable. The unavailability
were randomly selected between the assigned one in the original scheduling.

Results for the three identified scenarios are described in the next three paragraphs,
while a fourth paragraph is devoted to present an example of the rescheduling.

First scenario: Patients require a new day. In this scenario, it is not possible for one
(or more) patient(s) to have the pre-operative assessment on his/her planned day of the
initial scheduling.

We tested the 10 instances with 1, 2, and 4 patients to be rescheduled. With 1 patient
unavailable, the solution is able to find the optimal solution in 7 out of 10 instances
tested; while, with 2 and 4 patients unavailable, the solution finds the optimal solution
in 2 out of 10 instances. About the timings, with 1 patient to reschedule, the solution

22 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Table 4. Average time required to obtain the optimal solution in the different scenarios.

Resource TIME (S) TIME (S) TIME (S)
Unavailable SCENARIO 1 SCENARIO 2 SCENARIO 3

1 31.0 27.1 19.0
2 49.5 31.2 26.2
4 51.6 49.6 48.6

was able to reach the optimal solution on average in 31 seconds, while, with 2 and 4
patients, the results are obtained on average in approx. 49 and 51 seconds, respectively.

Second scenario: Operators are not available. In this scenario, it is considered the
case in which an operator (or more) is (are) not available.

We tested the 10 instances with 1, 2, and 4 operators not available in days in which
they were scheduled. With both 1 and 2 operators unavailable, the rescheduler is able to
find the optimal solution in 7 out of 10 instances and to find such solution in approx. 27
and 31 seconds on average, respectively. Increasing to 4 the number of unavailable oper-
ators leads to more patients involved in the rescheduling, thus, the number of instances
in which the rescheduler finds the optimal solution decreases to 2, with an average time
required to find such solutions of approx. 49 seconds.

Third scenario: Exam areas are not available. In this scenario, it is supposed that an
(or more) exam area(s) is (are) not available.

We tested this scenario with the 10 instances and considering the unavailability of
1, 2, and 4 exam areas. With 1 exam area unavailable, the solution obtains the optimal
solution in 7 out of 10 instances and the solution is obtained on average in 19 seconds.
Increasing the unavailable exam areas and testing the solution with 2 unavailable exam
areas the rescheduler still gets the optimal solution in 6 out of 10 instances, while, with
4 unavailable exam areas it finds the optimal solution in just 2 out of the 10 instances.
The average CPU times for computing optimal solutions for these last two cases are
around 26 and 48 seconds, respectively.

Example of rescheduling. We performed an analysis starting from the schedule in
Figure 1 in which three patients have been rescheduled in the day shown due to the
unavailability of the exam location with id equal to 3 required by them, whose result
is shown in Figure 10. The three patients were scheduled originally the day before
Figure 1, thus, they are rescheduled on the first available day to minimize the distance
between the original and the new schedule. Moreover, the image shows that there is a
time slot of waiting time for patient 18. This waiting time cannot be reduced because
the patients wouldn’t be able to fully complete all the exams without overlapping and
the rescheduler prefers to reassign this patient with one time slot of waiting time rather
than move one patient to another day, i.e., minimizing the distance between the original
day and the new one has higher priority than minimizing the waiting times.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 23

Fig. 10. Rescheduling example related to registrations 16, 22, and 23 of Figure 1 rescheduled to
a new day because of unavailability of exam location 3.

8 Web Application

In view of a practical application, the solution provided in this article should be acces-
sible to users with no or low knowledge of ASP. Thus, we developed a web application
that allows any hospital operators to interact with our solution and understand the re-
sults through a graphical interface.

The system architecture is reported in Figure 11. The graphical interface has been
developed using the frameworks Angular for the frontend, Node.js for the backend, and
GraphQL for data queries. We also used a wrapper inside the backend which calls the
solver CLINGO. Planning results are then stored in a database. The workflow of the
architecture is the following:

1. the user selects a period to plan through the frontend; data are shown according
to the selection, and then (s)he can start the first planning. The result of the first
planning represents the solution of the first sub-problem of the PAC scheduling
problem.

2. Once the first planning is completed, the result is stored and shown. Then, the user
has to select, from a default list of exams, all the exams necessary for each patient.
Now, the detailed planning can start. This corresponds to the second sub-problem
of the PAC problem.

3. The final scheduling is stored and shown with the precise starting time of each
exam.

These three steps are further elaborated in the next three paragraphs.

Data preparation and first sub-problem. In Figure 12 the first page is shown: Here
the user can select the period to plan and the solver timeout. In this screen, data are read-
only because in a real-world application data should be fed through direct integration
with the hospital system and its database. Three tabs then allow the user to check the
elements involved in the planning:

24 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Fig. 11. Representation of the web application architecture, together with the employed technolo-
gies.

– Patients tab, to monitor all the patients with a target date included in the planning
period (Figure 12).

– Personnel tab, to monitor the operators available in the selected period (Figure 13).
A drop-down menu allows to select which operator to inspect.

– Providers tab, to check all the exam areas enabled in the selected time period (Fig-
ure 14). A drop-down menu allows to select the exam area to inspect.

Then, by clicking the ”START PLANNING” button, the solver is called through
the wrapper, and the solution of the first PAC sub-problem is calculated. A loading
screen will appear and once the solver finishes the planning (optimum found or timeout
reached), the user is redirected to the next page in which the results are shown.

Second sub-problem. Here the user can look at the results of the first sub-problem,
each schedule can be selected through a drop down menu. At this point, the user has to
select the final list of exams required by each patient. Thus, by clicking on the edit icon
a menu will appear listing all the patient’s exams where a check box allows to select
which exams are necessary, as shown in Figure 15.

Moreover, a second tab called ”Graphics” displays the results obtained through two
kinds of graphs: A bar chart (Figure 16) in which the bars represent the number of
patients assigned to each day of the scheduled period, and four doughnuts charts (Figure
17) that represent the percentage of patients scheduled over the total number of patients,
grouped by the patients’ priority. Finally, by clicking on the ”START PLANNING”
button, again the solver is called on the second sub-problem and the detailed planning
with the precise starting time of all the exams is computed. Once the solver terminates,
the user is redirected to the final page.

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 25

Fig. 12. Data preparation.

Fig. 13. Personnel tab.

Final schedule. As shown in Figure 18, the final schedule page is made up of a drop
down menu, from which it can be selected the scheduled days, and two tabs: The pa-
tients info tab and the graphics tab. In the patients info tab, patients are sorted in a table
and by clicking on the icon in the ”Show Exams” column a table will appear listing
all the exams and their starting time. Figure 19, instead, reports a chart shown in the
graphics tab, in which on the x-axis there is the timeline and on the y-axis the patients,
and each segment corresponds to an exam. A similar chart in the graphics tab contains
the exam locations on the y-axis.

26 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Fig. 14. Providers tab

9 Related Work

This paper is an extended and revised version of a paper appearing in the LNCS post-
proceedings of the 20th International Conference of the Italian Association for Artifi-
cial Intelligence (AI*IA 2021) [16], having the following main improvements: (i) an
improved encoding for the first sub-problem, with more patients assigned (Section 5.1),
(ii) a comparison to alternative logic-based formalisms (Section 6.4), (iii) a reschedul-
ing solution and related experimental analysis (Section 7), and (iv) a web application
to easy the usage of our scheduling solution (Section 8).

The rest of the section is organized in two paragraphs: The first is focused on al-
ternative methods for solving the PAC problem, while the second mentions works in
which ASP has been employed in scheduling problems.

Solving the PAC problem. Edward at al. [23] used two simulation models to analyse
the difficulties of planning in the context of PAC and to determine the resources needed
to reduce waiting times and long access times. The models were tested in a large uni-
versity hospital and the results were validated by measuring the level of patients’s satis-
faction. Stark et al. [43] used a Lean quality improvement process changing the process
and the standard routine. For example, patients were not asked to move from one room
to another for the visits, but patients were placed in a room, and remained there for the
whole duration of their assessment. This and other changes to the processes led to a
decrease in the average lead time for patients and to the number of patients required to
return the next day to complete the visits. The authors of [35, 27, 17, 44, 45] studied the
importance of implementing the PAC problem and the positive results obtained by hav-
ing less waiting time between the exams and for the visit to the hospital. In particular,
while different clinics follow different guidelines, implementing PAC has proved to be

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 27

Fig. 15. Edit patient exams.

Fig. 16. Bar chart.

an important tool to avoid the cancellation of surgeries and to significantly reduce the
risk associated with the surgery.

Differently from the works above mentioned, the solution we proposed in this paper
focuses on an actual scheduling of the PAC with real requirements, making a practical
system able to solve the PAC scheduling and rescheduling problems. Moreover, our
solution guarantees a certain level of usability; in fact, through the two-phase approach
and the web application that we developed, we can support the users in computing the
scheduling.

As it can be seen, all works mentioned are about the scheduling problem. To the best
of our knowledge, there is no paper dealing with the rescheduling PAC problem: Our
work is thus the first one which proposes and implements a rescheduling PAC problem
and related solution.

28 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

Fig. 17. Doughnut chart.

Fig. 18. Final schedule page.

Solving scheduling problems with ASP. ASP has been successfully used for solving
hard combinatorial and application scheduling problems in several research areas. In
the Healthcare domain (see, e.g., [4] for a recent survey), the first solved problem was
the Nurse Scheduling Problem [5, 22, 6], where the goal is to create a scheduling for
nurses working in hospital units. Then, the problem of assigning operating rooms to pa-
tients, denoted as Operating Room Scheduling [20, 21], has been treated, and further ex-
tended to include bed management [19]. More recent problems include the Chemother-
apy Treatment Scheduling problem [18], in which patients are assigned a chair or a bed
for their treatments, and the Rehabilitation Scheduling Problem [15], which assigns pa-
tients to operators in rehabilitation sessions. The current paper is the only one which
deals with the pre-operative phase; moreover, it employs a two-phase approach. In [14],
it is proposed a solution using ASP to the problem of assigning a date to visit or ther-

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 29

Fig. 19. Final schedule page, graphics tab, patients chart

apy for multiple recurrent exams to chronic patients. As in our work, the problem is
split into two sub-problems. The main difference between the two works is that in our
the two sub-problems are solved at different times, while in [14] the problem is split
into two sub-problems to increase the performance of the solution using the Benders’s
decomposition method.

Concerning scheduling problems beyond the Healthcare domain, ASP encoding
were proposed for the following problems: Incremental Scheduling Problem [9], where
the goal is to assign jobs to devices such that their executions do not overlap one an-
other; Team Building Problem [40], where the goal is to allocate the available personnel
of a seaport for serving the incoming ships; and the Conference Paper Assignment Prob-
lem [7], which deals with the problem of assigning reviewers in the Program Committee
to submitted conference papers. Other relevant papers are Gebser et. al [33], where, in
the context of routing driverless transport vehicles, the setup problem of routes such that
a collection of transport tasks is accomplished in case of multiple vehicles sharing the
same operation area is solved via ASP, in the context of car assembly at Mercedes-Benz
Ludwigsfelde GmbH, and the recent survey paper by Falkner et al. [26], where indus-
trial applications dealt with ASP are presented, including those involving scheduling
problems.

10 Conclusion

In this paper, we have presented an analysis of the PAC scheduling problem modeled
and solved with ASP. We started from a mathematical formulation of the problem,
whose specifications come from a real scenario, and then presented our ASP solution.
Results on synthetic data shows that the solution is able to assign a high number of pa-
tients with high priority, and compares well to other logic-based formalisms. We have
then modeled and solved the PAC rescheduling problem, which comes into play when

30 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

the computed scheduling can not be implemented due to some unavailability. We finally
presented a web application for easy usage of our scheduling solution. Possible topics
for future research include testing our solution with real data (we remind that, through
the specifications used are real, data have been randomly generated), when available,
and with other ASP solvers such as WASP [2]. Another option would be to test the
CLINGO multi-shot approach [29] on the first sub-problem.

References
1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with

hybrid ASP. In: LPNMR. Lecture Notes in Computer Science, vol. 11481, pp. 3–17. Springer
(2019)

2. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evaluation of
disjunctive programs in WASP. In: Balduccini, M., Lierler, Y., Woltran, S. (eds.) LPNMR.
LNCS, vol. 11481, pp. 241–255. Springer (2019)

3. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evaluation
of disjunctive programs in WASP. In: LPNMR 2019. LNCS, vol. 11481, pp. 241–255.
Springer (2019). https://doi.org/10.1007/978-3-030-20528-7 18, https://doi.org/10.

1007/978-3-030-20528-7_18
4. Alviano, M., Bertolucci, R., Cardellini, M., Dodaro, C., Galatà, G., Khan, M.K., Maratea,

M., Mochi, M., Morozan, V., Porro, I., Schouten, M.: Answer set programming in health-
care: Extended overview. In: IPS and RCRA 2020. CEUR Workshop Proceedings, vol. 2745.
CEUR-WS.org (2020), http://ceur-ws.org/Vol-2745/paper7.pdf

5. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming encoding for
nurse scheduling. In: AI*IA. LNCS, vol. 10640, pp. 468–482. Springer (2017)

6. Alviano, M., Dodaro, C., Maratea, M.: Nurse (re)scheduling via answer set programming.
Intelligenza Artificiale 12(2), 109–124 (2018)

7. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set program-
ming to the conference paper assignment problem. In: AI*IA. Lecture Notes in Computer
Science, vol. 10037, pp. 164–178. Springer (2016)

8. Ansótegui, C., Pacheco, T., Pon, J.: Pypblib (2019), https://pypi.org/project/

pypblib/
9. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P., Faber, W. (eds.)

Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LP-
NMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6645, pp. 284–296. Springer (2011). https://doi.org/10.1007/978-3-642-20895-
9 33, https://doi.org/10.1007/978-3-642-20895-9_33

10. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

11. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
Transactions on Knowledge and Data Engineering 12(5), 845–860 (2000)

12. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format (2013), https://www.mat.
unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

13. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: The design of the fifth answer set program-
ming competition. CoRR abs/1405.3710 (2014), http://arxiv.org/abs/1405.3710

14. Cappanera, P., Gavanelli, M., Nonato, M., Roma, M.: A decomposition approach to the
clinical pathway deployment for chronic outpatients with comorbidities. In: Amorosi, L.,
Dell’Olmo, P., Lari, I. (eds.) Optimization in Artificial Intelligence and Data Sciences. pp.
213–226. Springer International Publishing, Cham (2022)

Scheduling Pre-Operative Assessment Clinic with Answer Set Programming 31

15. Cardellini, M., Nardi, P.D., Dodaro, C., Galatà, G., Giardini, A., Maratea, M., Porro, I.:
A two-phase ASP encoding for solving rehabilitation scheduling. In: Moschoyiannis, S.,
Peñaloza, R., Vanthienen, J., Soylu, A., Roman, D. (eds.) Proceedings of the 5th International
Joint Conference on Rules and Reasoning (RuleML+RR 2021). Lecture Notes in Computer
Science, vol. 12851, pp. 111–125. Springer (2021)

16. Caruso, S., Galatà, G., Maratea, M., Mochi, M., Porro, I.: An ASP-based approach to
scheduling pre-operative assessment clinic. In: Bandini, S., Gasparini, F., Mascardi, V., Pal-
monari, M., Vizzari, G. (eds.) Proc. of AIxIA 2021 - Advances in Artificial Intelligence -
20th International Conference of the Italian Association for Artificial Intelligence, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 13196, pp. 671–688. Springer
(2021)

17. Correll, D., Bader, A., Hull, M., Hsu, C., Tsen, L., Hepner, D.: Value of Preoperative Clinic
Visits in Identifying Issues with Potential Impact on Operating Room Efficiency. Anesthe-
siology 105(6), 1254–1259 (12 2006). https://doi.org/10.1097/00000542-200612000-00026,
https://doi.org/10.1097/00000542-200612000-00026

18. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-based solution
to the chemotherapy treatment scheduling problem. Theory and Practice of Logic Program-
ming 21(6), 835–851 (2021)

19. Dodaro, C., Galatà, G., Khan, M.K., Maratea, M., Porro, I.: An ASP-based solution for
operating room scheduling with beds management. In: Fodor, P., Montali, M., Calvanese,
D., Roman, D. (eds.) Proceedings of the Third International Joint Conference on Rules and
Reasoning (RuleML+RR 2019). Lecture Notes in Computer Science, vol. 11784, pp. 67–81.
Springer (2019)

20. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: Operating room scheduling via answer set
programming. In: AI*IA. LNCS, vol. 11298, pp. 445–459. Springer (2018)

21. Dodaro, C., Galatà, G., Maratea, M., Porro, I.: An ASP-based framework for operating room
scheduling. Intelligenza Artificiale 13(1), 63–77 (2019)

22. Dodaro, C., Maratea, M.: Nurse scheduling via answer set programming. In: LPNMR.
LNCS, vol. 10377, pp. 301–307. Springer (2017)

23. Edward, G.M., Das, S.F., Elkhuizen, S.G., Bakker, P.J.M., Hontelez, J.A.M., Hollmann,
M.W., Preckel, B., Lemaire, L.C.: Simulation to analyse planning difficulties at the preoper-
ative assessment clinic. BJA: British Journal of Anaesthesia 100(2), 195–202 (02 2008)

24. Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Magazine
37(3), 53–68 (2016)

25. Faber, W., Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in an-
swer set programming. Artificial Intelligence 175(1), 278–298 (2011)

26. Falkner, A.A., Friedrich, G., Schekotihin, K., Taupe, R., Teppan, E.C.: Industrial applications
of answer set programming. Künstliche Intelligenz 32(2-3), 165–176 (2018)

27. Ferschl, M., Tung, A., Sweitzer, B., Huo, D., Glick, D.: Preoperative Clinic Visits Reduce
Operating Room Cancellations and Delays. Anesthesiology 103(4), 855–859 (10 2005)

28. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory
solving made easy with clingo 5. In: ICLP (Technical Communications). OASICS, vol. 52,
pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

29. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo.
Theory Pract. Log. Program. 19(1), 27–82 (2019)

30. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From theory to
practice. Artificial Intelligence 187, 52–89 (2012)

31. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set programming com-
petition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR. Lecture Notes in Computer Sci-
ence, vol. 10377, pp. 3–9. Springer (2017)

32 Simone Caruso, Giuseppe Galatà, Marco Maratea, Marco Mochi, and Ivan Porro

32. Gebser, M., Maratea, M., Ricca, F.: The seventh answer set programming competition: De-
sign and results. Theory and Practice of Logic Programming 20(2), 176–204 (2020)

33. Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M., Runge, M.: Routing driverless
transport vehicles in car assembly with answer set programming. Theory and Practice of
Logic Programming 18(3-4), 520–534 (2018). https://doi.org/10.1017/S1471068418000182,
https://doi.org/10.1017/S1471068418000182

34. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021), https://www.
gurobi.com

35. Harnett, M.P., Correll, D., Hurwitz, S., Bader, A., Hepner, D.: Improving Efficiency and Pa-
tient Satisfaction in a Tertiary Teaching Hospital Preoperative Clinic. Anesthesiology 112(1),
66–72 (01 2010)

36. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient maxsat solver. J. Satisf.
Boolean Model. Comput. 11(1), 53–64 (2019). https://doi.org/10.3233/SAT190116, https:
//doi.org/10.3233/SAT190116

37. Martins, R., Manquinho, V.M., Lynce, I.: Open-wbo: A modular maxsat solver,. In: SAT
2014. LNCS, vol. 8561, pp. 438–445. Springer (2014). https://doi.org/10.1007/978-3-319-
09284-3 33, https://doi.org/10.1007/978-3-319-09284-3_33

38. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-Guided MaxSAT with Soft Cardinality
Constraints. In: CP 2014. pp. 564–573. Springer, Lyon, France (September 2014)

39. Olivier Roussel and Vasco Manquinho: Input/Output Format and Solver Requirements for
the Competitions of Pseudo-Boolean Solvers (2012), https://www.cril.univ-artois.
fr/PB12/format.pdf

40. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic
Programming 12(3), 361–381 (2012)

41. Saikko, P., Berg, J., Järvisalo, M.: LMHS: A SAT-IP hybrid maxsat solver. In: SAT 2016.
LNCS, vol. 9710, pp. 539–546. Springer (2016). https://doi.org/10.1007/978-3-319-40970-
2 34, https://doi.org/10.1007/978-3-319-40970-2_34

42. Schüller, P.: Answer set programming in linguistics. Künstliche Intelligence 32(2-
3), 151–155 (2018). https://doi.org/10.1007/s13218-018-0542-z, https://doi.org/10.
1007/s13218-018-0542-z

43. Stark, C., Gent, A., Kirkland, L.: Improving patient flow in pre-operative assessment. BMJ
Open Quality 4(1) (2015). https://doi.org/10.1136/bmjquality.u201341.w1226

44. Tariq, H., Ahmed, R., Kulkarni, S., Hanif, S., Toolsie, O., Abbas, H., Chilimuri, S.: Develop-
ment, functioning, and effectiveness of a preoperative risk assessment clinic. Health Services
Insights 2016, 1 (10 2016). https://doi.org/10.4137/HSI.S40540

45. Woodrum, C.L., Wisniewski, M., Triulzi, D.J., Waters, J.H., Alarcon, L.H., Yazer, M.H.: The
effects of a data driven maximum surgical blood ordering schedule on preoperative blood
ordering practices. Hematology 22(9), 571–577 (2017)

